
Is race erased? Decoding race from patterns of
neural activity when skin color is not diagnostic
of group boundaries
Kyle G. Ratner,1 Christian Kaul,1,2 and Jay J. Van Bavel1

1Department of Psychology and 2Center for Neural Science, New York University, New York, NY, USA

Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually
salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural
activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we
used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized
own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based
responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover,
race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect
low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions
of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.
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In perhaps his most famous speech, Martin Luther King Jr (1963) said,

“I have a dream that my four children will one day live in a nation

where they will not be judged by the color of their skin, but by the

content of their character.” Almost five decades after King spoke these

words, America is a more integrated society, and social identities have

become increasingly decoupled from the racial and ethnic cues that

have historically defined them. Living in a pluralistic society often

requires that people learn intergroup affiliations without relying on

racial cues as a guide. As a consequence, people might not encode the

race of other people’s faces when it is not indicative of group bound-

aries (Sidanius and Pratto, 1999; Kurzban et al., 2001; Cosmides et al.,

2003; Hehman et al., 2010). However, racial differences are often

associated with physiognomic markers, such as skin tone and facial

features, and people can differentiate the race of faces within several

hundred milliseconds (Caldara et al., 2003; Ito and Urland, 2003).

This study examines whether the visual system represents race when

perceptual indicators of race are irrelevant to group membership.

Several neuroimaging studies have recently investigated the repre-

sentation of race�a visually and socially salient social category�in the

face processing network (see Macrae and Quadflieg, 2010 for a recent

review). Although the neural correlates of face perception are widely

distributed (Ishai et al., 1999), a sub-region of the fusiform gyrus (FG),

located on the ventral surfaces of the temporal lobe, plays a central role

in the processing of faces (Sergent et al., 1992; Puce et al., 1995;

Kanwisher et al., 1997). Several functional magnetic resonance imaging

(fMRI) studies have shown that race modulates neural activity in the

FG. They specifically find increased activity in the FG in response to

own-race vs other-race faces (Golby et al., 2001; Lieberman et al., 2005;

Kim et al., 2006).

Recent studies have questioned whether this reported racial bias in

the FG response reflects factors related to race per se (e.g. expertise with

own-race faces) or group membership more generally (e.g. identification

with own-group faces). Specifically, Van Bavel et al. (2008, 2011)

conducted a series of experiments in which White participants were

assigned to one of two novel mixed-race groups and responded to

Black and White faces from their in-group and an out-group. Making

race orthogonal to group membership permitted an independent

comparison of the effects of race (Black vs White) and group

membership (in-group vs out-group). The faces in each group were

counterbalanced across participants to ensure that any effects of

group membership were due to group distinctions rather than exogen-

ous stimulus properties. In both studies, greater activity to in-group vs

out-group faces was found in the fusiform gyri (Van Bavel et al., 2008),

and, more specifically, the fusiform face area (Van Bavel et al., 2011).

Moreover, there was no main effect of race on the FG activity and the

effect of group membership was not moderated by race. In addition,

Van Bavel et al. (2011) found that the degree to which FG activity was

greater to in-group vs out-group faces was correlated with better memory

for in-group vs out-group faces. A series of behavioral follow-up stu-

dies found a similar pattern of results: participants showed preferences

for in-group members on an implicit measure of evaluation (Van Bavel

and Cunningham, 2009) and superior recognition memory for

in-group faces (Van Bavel et al., 2012), regardless of race.

Previous research examining activity in the FG in response to race

and group membership used standard univariate fMRI analysis tech-

niques (Van Bavel et al., 2008, 2011). These univariate procedures

average across the blood oxygen level dependent (BOLD) response

recorded from a set of contiguous voxels in a particular brain area

and test whether the resulting estimate is different between two or

more stimuli or tasks (Friston et al., 1995). Although univariate pro-

cedures are currently the conventional approach for analyzing fMRI

data, there has been a growing interest in the neuroimaging commu-

nity in using multivariate techniques, such as multivariate pattern
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analysis (Haynes and Rees, 2006; Norman et al., 2006; Kriegeskorte

et al., 2006; Mur et al., 2009).

Multivariate pattern analysis (MVPA) has recently been used

successfully in a handful of studies to examine the representation of

social categories (Chiu et al., 2011; Kaul et al., 2011; Natu et al., 2010).

Unlike traditional univariate analysis procedures, MVPA uses pattern

classification algorithms to map categories of stimuli or psychological

states to brain activity. In a typical experiment, a portion of the data is

used to train classifiers to detect patterns of voxels that are responsive

to specific conditions or categories of stimuli (e.g. Black and White

faces). Then, the ability of the pattern of voxels that comprises each

classifier to decode the remaining independent data is used to infer

whether the conditions of interest are represented by different patterns

of brain activity. Thus, whereas univariate analyses test differences

between conditions at each individual voxel or the average of the

voxels within a particular region, MVPA tests differences in patterns

of voxels. In other words, MVPA allows investigators to examine

whether different neural patterns of activation go undetected by trad-

itional univariate analysis when two conditions produce the same

mean-level of activation, but activate different voxels within a certain

region of interest (ROI).1

As discussed earlier, univariate analyses have shown that group

membership can influence the processing of faces in the absence of

salient perceptual intergroup cues. In this context, group membership,

and not race, appears to guide neural activity (Van Bavel et al., 2008,

2011) and social behavior, including evaluation and recognition

memory of faces (Van Bavel and Cunningham, 2009; Van Bavel

et al., 2012). These investigators also observed that the typical finding

of greater fusiform activity to own-race vs other-race faces (Golby

et al., 2001; Lieberman et al., 2005; Kim et al., 2006) was absent

when orthogonal group distinctions were made salient. This raises

an important question that can be tested with MVPA: when race is

irrelevant to group membership distinctions, does the face-sensitive FG

still represent race, even though mean BOLD activity is driven by

group membership, or is race ‘erased’ (i.e. no longer perceptually

represented in the FG)?

In this research, we tested these possibilities by using MVPA to

re-analyze an fMRI dataset collected by Van Bavel et al. (2011).

Given that previous research has implicated the FG in the structural

encoding of facial stimuli (Kanwisher et al., 1997) and race perception

(Golby et al., 2001), we focused our analyses on the FG. Although our

previous research suggests that race can be made irrelevant in certain

contexts, we also have noted that ‘race, like any physical or psycho-

logical property, may be represented in the brain, even when it is not

exerting an inFuence on a speciEc mental process or task’ (Van Bavel

and Cunningham, 2011, p. 271). Therefore, we reasoned that MVPA

would reveal representations of race in the FG even when univariate

analyses find no differential effect of target race (Black vs White) on

neural activity within the FG. We also analyzed a region of early visual

cortex to determine whether representations of race in the FG reflected

low-level perceptual information (e.g. color, contrast) fed forward

from early visual cortex. Moreover, to determine that our findings

were not simply a result of the entire brain responding to race, we

also analyzed a control region outside the visual processing stream.

METHOD

Participants

As was the case for Van Bavel et al. (2011), data from 17 White

participants (mean age¼ 20) were analyzed for this study. Each

participant was paid $40 for completing the study and provided writ-

ten informed consent prior to the start of the protocol. The session

took place at the neuroimaging facility at Queen’s University.

Procedure

Group assignment and learning

After consent was obtained, participants were led to a behavioral test-

ing room. They were told that they would be assigned to a team: the

Leopards or the Tigers, and that before beginning the scanning session,

it was important for them to memorize the faces of the people who

belonged to the two teams. Participants were randomly assigned to one

of the teams and then completed two learning tasks to familiarize

themselves with the members of each team (Van Bavel et al., 2008;

Van Bavel and Cunningham, 2009). Because the current dataset was

described in a previously published study (Van Bavel et al., 2011), we

only report methodological details relevant to the present re-analysis.

During the first learning task, participants spent 3 min memorizing

16 male faces that were divided into two teams of eight (Leopards and

Tigers). All the faces were presented simultaneously on the screen. Face

stimuli were color images created in Photoshop and presented as

2� 2.5 in at 72 pixels per inch. All faces had a neutral expression

and were oriented according to the same forward-facing angle. Each

team had an even number of Black and White faces, and assignment

was fully counterbalanced so that no perceptual cues allowed partici-

pants to visually sort the faces into teams.

The second learning task was designed to reinforce their team affili-

ation and further strengthen their memory for the members of each

team. It lasted �13 min and was separated into two blocks. During

each block, participants were asked to categorize faces one-at-a-time as

members of the Leopard or Tiger team. To ensure that participants

identified with their team, the participants also categorized a digital

photograph of their own face. Participants did not view their own face

in any of the subsequent parts of the study. During the first block of

the second learning task, a label was used to remind participants

whether each face was a Leopard or Tiger. Participants categorized

eight in-group and eight out-group faces one time each and their

own face three times, for a total of 19 trials. The team labels were

removed during the second block, which forced participants to rely

on their memory to accurately categorize the faces. After each trial in

the second block, feedback indicated whether the response was correct

and listed the correct team affiliation for each face. Participants cate-

gorized each in-group and out-group face three times and their own

face three times during the second block, for a total of 51 trials.

Face categorization

After the learning and group assignment, participants were escorted to

a Siemens 3T Tim Trio scanner, where they were positioned for the

scanning session. All stimuli presented during the fMRI session were

back-projected from an LCD projector to a clear screen at the back of

the scanner bore. Participants were able to see these stimuli using a

mirror mounted on top of the head coil (the visual angle of the stimuli

was �88� 68). Stimuli were presented one-at-a-time in the center of

an otherwise black screen. Participants completed a face categorization

task that followed a mixed block/event-related design of five runs.

Each run comprised four randomly ordered blocks: two in-group

categorization blocks and two out-group categorization blocks

(Figure 1). During in-group categorization blocks, participants pressed

1To illustrate how this could occur, an analogy to the American presidential election process is useful. The

boundaries of the United States are used to define the ROI, the individual states are the voxels, and the two

candidates are the separate conditions. A univariate fMRI analysis is like the popular vote. In determining the

results, the vote counters collapse across the tallies from the individual states and whichever candidate has the

most overall votes is the winner. Multivariate techniques are similar to interpreting the meaning of the vote based

on the pattern of states or districts that voted ‘blue’ or ‘red’. The overall popular vote could be a statistical tie,

similar to when there is no mean-level difference in neural activation; however, the pattern of ‘blue’ and ‘red’

states still provides interesting information about how the country voted (e.g. revealing strong regional preferences

for different parties).
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a button only if the face was an in-group member. During out-group

categorization blocks, participants pressed a button only if the face was

an out-group member. Every block consisted of 12 trials, for a total of

240 trials. The block type was indicated for 4 s before each block began.

The trials in each block were separated by a fixation cross that appeared

for 2, 4 or 6 s (in a pseudo-random order). This jittered presentation

allowed for modeling of the hemodynamic signal. Following the fixation

cross, a face appeared for 2 s. The face was drawn from a pool of 24

faces. The pool contained eight in-group faces, eight out-group faces

and eight novel faces of individuals who were unaffiliated with the

in-group or out-group. Each face was presented twice in each run:

once during in-group categorization and once during out-group cat-

egorization. Participants saw the unaffiliated faces for the first time

during fMRI scanning. Faces were racially diverse such that half of the

faces were White and half were Black (i.e. race was orthogonal to group

membership).

Neuroimaging parameters, acquisition and preprocessing

Changes in the fMRI BOLD signal were measured using a single-shot

gradient echo-planar pulse sequence [32 axial slices; 3.5 mm thick;

0.5 mm skip; echo time¼ 25 ms; repetition time (TR)¼ 2000 ms;

in-plane resolution¼ 3.5� 3.5 mm; matrix size¼ 64� 64; field of

view¼ 224 mm]. Preprocessing was done with SPM8 (Wellcome

Department of Cognitive Neurology, London, UK). Data were

realigned to the first image and corrected for slow signal drift with a

128 s high-pass filter. The time series from each voxel was de-trended

to remove linear and quadratic trends, and z-scored to normalize the

time series to have a mean of zero and a variance of one. Condition

onsets were adjusted for the lag in hemodynamic response function by

shifting all block-onset timings by three volumes (6 s).

Localization of the fusiform gyri and control regions of interest

To localize the ROIs, we first performed a within-participant analysis

with a voxel-wise general linear model. The model comprised fourteen

boxcar waveforms representing the experimental conditions: for two

different tasks, six regressors modeling Black and White faces that were

part of the in-group, out-group or unaffiliated with either group, plus

two regressors to model direction screens and the duration of the rest

period (comprising only a fixation cross). We then computed the

contrast of all faces vs rest.2 For each participant, this contrast

contained a balanced number of blocks with the same number of

Black and White faces.

On the basis of this contrast, we located a face sensitive region of the

FG bilaterally. The peak of the activation in the FG defined the center

of two 10 mm diameter sphere-shaped ROIs (one per hemisphere). We

also created two other ROIs. One ROI comprised an area of each

participant’s early visual cortex (VC) that approximated primary

visual cortex. We included an ROI for VC because this brain region

is sensitive to low-level visual differences, including color perception

(Brouwer and Heeger, 2009) and increased attention (Kastner et al.,

1999), but not the higher-order social significance of race. The

additional ROI was a size-matched control region (CTR) in an area

of the medial orbitofrontal cortex that was not face-sensitive according

to our face localizer (see also Kaul et al., 2011). The VC and CTR ROIs

each comprised one medially located sphere with equal volume

(12.6 mm diameter). The central coordinates of the ROIs for each

participant are listed in Table 1.

Univariate analysis

Previously published results obtained from these data using a

univariate analysis (Van Bavel et al., 2011) found that the mean

BOLD signal in the FG did not significantly differ between Black

and White faces when novel group membership was the relevant cat-

egorical dimension. The goal of the current univariate analysis was to

replicate this previous finding using the same preprocessing steps and

Fig. 1 Sample trials in the in-group categorization block (left) and out-group categorization block (right) during fMRI. Each block started with a directions screen (the top screen in the figure). After the
directions screen, participants completed 12 trials. On each trial, participants hit a button if a randomly presented face (the third screen in the figure) was an in-group member (the left screens in the figure) or
out-group member (the right screens in the figure) and then saw a fixation cross (the bottom screen in the figure). Each face appeared for 2 s, during which time participants responded with a button box in
their right hand. To allow for estimation of the hemodynamic signal, fixation crosses appeared between faces for 2, 4 or 6 s (in pseudo-random order). After the completion of each block, directions for the next
block appeared. Each of five runs contained two in-group categorization blocks and two out-group categorization blocks (counterbalanced).

2Although a functional Fusiform Face Area (FFA) localizer was collected (Van Bavel et al., 2011), for many

participants this localizer did not yield enough voxels to conduct MVPA. MVPA requires multiple voxels for

each ROI for each participant. We therefore used the alternate functional localizer described in the text.

Univariate analyses replicated across both localizers.
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voxels as the MVPA. The only exception was that data were spatially

smoothed prior to the univariate analysis, whereas unsmoothed data

were used in the MVPA.3 After smoothing the data, the BOLD re-

sponses to Black and White faces (irrespective of group membership)

were calculated by averaging the signal from voxels within each ROI

(FG, VC and CTR). We then compared these mean BOLD values

collapsed across all subjects.

Multivariate analysis

The preprocessed data without spatial smoothing from the five experi-

mental runs were analyzed using the MATLAB routines provided in

the Princeton MVPA Toolbox (www.csbmb.princeton.edu/mvpa). To

determine classification accuracies, only classification with unseen and

independent test data was considered, using a leave-one-session-out

cross-validation method (Mur et al., 2009; Pereira et al., 2009). In the

actual classification step, we used a Gaussian Naı̈ve Bayes classifier

algorithm (see Mitchell et al., 2004) within the MVPA toolbox.

Classification accuracies were averaged across the five cross-

validations for each ROI for each participant. Thus, for each partici-

pant, this procedure yielded exactly one mean classification accuracy

per ROI (i.e. 17 total observations per ROI). We then used paired

t-tests to assess significant differences in decoding accuracies from

chance (two categories¼ 50% chance) and a control-baseline defined

by the classification accuracy within CTR. We also examined whether

our results were robust across hemisphere, block type (in-group or

out-group categorization) and group (in-group, out-group,

unaffiliated).

In order to evaluate the probability that the classification was driven

by over-fitting of arbitrary patterns of spatial correlations in the data,

we used the shuffle control routine in the MVPA toolbox to conduct a

permutation test that involved reshuffling training labels for each

round of the cross-validation (Kaul et al., 2011; Mur et al., 2009). If

the null assumption that classification is driven by chance were true,

similar results should be obtained if labels indicating race during train-

ing were shuffled randomly. We expected the resulting distribution of

classification accuracies to confirm the expected distribution for

chance prediction (two categories¼ 50% chance).

RESULTS

Behavioral results

To assess behavioral responses during fMRI, we used paired t-tests to

compare participants’ reaction time (ms) and accuracy to in-group vs

out-group blocks of the Face Categorization Task. Both blocks were

relatively difficult (mean accuracy¼ 58.0%, where chance¼ 33.3%).

However, participants were faster, t(16)¼ 2.90, P < 0.01 and more

accurate, t(16)¼ 3.07, P < 0.01, to categorize faces during the in-group

(1223 ms; 62.0%) vs the out-group (1306 ms; 54.1%) blocks.

Univariate results

Replicating previously published analyses on the current dataset

(Van Bavel et al., 2011), paired t-tests indicated that the mean

BOLD signal in all three ROIs did not significantly differ between

Black and White faces (P’s > 0.47). Also replicating past findings,

when collapsing across race, the mean BOLD signal was signifi-

cantly greater to in-group vs out-group faces in the FG, t(16)¼ 2.4,

P < 0.05 and VC, t(16)¼ 2.4, P¼ 0.05, but not the control region,

t(16)¼ 1.4, n.s.

MVPA results

In line with the view that race is represented in the FG even when it is

not associated with racial bias in mean BOLD signal and is not expli-

citly relevant to categorization (see Van Bavel and Cunningham, 2011),

MVPA indicated that race could be decoded better than chance in the

FG, 56.6%, t(16)¼ 6.11, P < 0.01 and in the VC, 52.3%, t(16)¼ 2.47,

P < 0.05. Importantly, race was not represented in the control area,

49.8%, t(16)¼�0.30, n.s., suggesting that these effects were not due

to global patterns in race decoding. Figure 2A shows the mean decod-

ing accuracies, averaged across participants. We then defined the dis-

tribution of decoding results from the control region (CTR) as an

alternate baseline (instead of 50% chance). Testing against this alter-

nate baseline, we replicated race decoding in FG, t(16)¼ 5.20, P < 0.01

and in VC, t(16)¼ 2.10, P¼ 0.05.

The FG data reported above were collapsed across hemispheres.

However, it is well documented that the FG shows a degree of asym-

metry in its response to faces (Kanwisher et al., 1997). To evaluate any

possible differences in hemispheric classification accuracy, we repeated

the analysis in the FG for each hemisphere. Right and left FG success-

fully predicted facial race at similar levels to that seen when analyzed

together, right FG: 55.3%, t(16)¼ 5.10, P < 0.01, left FG: 55%,

t(16)¼ 6.12, P < 0.01. There were no significant differences when

comparing classification accuracies of left and right FG across all

participants t(16)¼�0.23, n.s.

Next, we examined the possibility that prediction accuracy in FG

might reflect low-level visual information propagated from early

visual cortices. To this end, we compared the decoding results of

FG and VC. Facial race decoding was significantly higher in FG than

in VC, t(16)¼ 2.98, P < 0.05, suggesting relatively greater race-relevant

information in the neural pattern in FG relative to VC. Moreover,

decoding accuracies from VC and FG were not significantly

correlated, r¼ 0.17, P¼ 0.52, further corroborating the relative inde-

pendence of information represented in the two regions. This finding

suggests that when categorizing faces on the basis of group member-

ship, race processing not only involves low-level visual features

(e.g. skin color), but also additional information (e.g. configural

properties).

During data collection, participants performed one of two group

membership tasks, reporting whether the faces belonged to the

Table 1 Central coordinates of the ROIs for each participant

Participant FG (L) FG (R) VC CTR

1 [�30, �13, �12] [37, �27, �4] [1, �50, 0] [4, 56, 23]
2 [�32, �2, �2] [32, �6, �6] [�2, �52, �3] [3, 62, 22]
3 [�38, �27, �13] [28, �13, �16] [�2, �41, 21] [6, 43, 24]
4 [�23, �29, �6] [22, �25, �6] [�2, �50, �28] [5, 59, 28]
5 [�36, �29, �22] [48, �22, �26] [�9, �32, 8] [6, 53, 20]
6 [�36, �29, �22] [36, �2, �22] [�2, �55, �19] [6, 48, 26]
7 [�33, �15, �17] [40, �30, �10] [5, �55, �1] [4, 31, 29]
8 [�31, �27, �9] [42, �27, �6] [14, �59, �2] [8, 48, 16]
9 [�39, �29, �4] [32, �19, �7] [0, �53, 8] [3, 33, 26]
10 [�35, �37, �10] [33, �30, �13] [0, �54, �10] [7, 48, 8]
11 [�43, �6, �21] [39, �13, �25] [3, �46, 7] [6, 35, 13]
12 [�32, �14, �28] [34, �14, �35] [14, �57, �25] [3, 21, �2]
13 [�35, �10, �2] [39, �20, �5] [�3, �56, �6] [9, 43, 23]
14 [�30, �12, �27] [33, �18, �28] [�2, �57, �28] [4, 48, 4]
15 [�33, �6, �16] [40, �1, �15] [�9, �29, �11] [4, 58, 13]
16 [�38, �16, �19] [40, �13, �18] [�2, �56, �8] [3, 52, 17]
17 [�38, �17, �26] [45, �13, �18] [�10, �60, �5] [11, 45, 11]

Note: FG (L), left fusiform gyrus; FG (R), right fusiform gyrus; VC, early visual cortex; CTR, control
region in the prefrontal cortex.

3The data for the univariate analyses were spatially smoothed to maximize the signal-to-noise ratio (Mikl et al.,

2008). Due to the possibility that spatial smoothing can remove fine-grained pattern information, we did not

spatially smooth the data prior to the MVPA (Kriegeskorte et al., 2006; Mur et al., 2009, but see Kamitani and

Sawahata, 2010; Op de Beeck, 2010).

The representation of race in the fusiform gyrus SCAN (2013) 753
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in-group (yes/no) or out-group (yes/no). Although participants

generally responded faster to the faces when performing the in-group

task, there was no theoretical reason that race should be decoded

differently during these two tasks. Thus, to test this reasoning, we

repeated our MVPA analysis separately for each of the two tasks. As

predicted, for both tasks the results replicated the combined analysis,

and there were no significant differences between the tasks, FG: 58%/

56.1%, t(32)¼ 1.9, n.s.; CTR: 51.2%/50.7%, t(32)¼�1.71, n.s.

To ensure that race decoding was not dependent on group mem-

bership, we repeated the analysis within each stimulus subgroup that

the study design offered (in-group, out-group and unaffiliated faces).

As depicted in Figure 2B, the pattern of the FG result was similar in all

three groups, in-group: 55.5%, t(16)¼ 4.38, P < 0.01; out-group:

55.1%, t(16)¼ 3.24, P < 0.05; unaffiliated: 54.6%, t(16)¼ 3.29,

P < 0.05. Results in the control region were again at chance prediction,

in-group: 51.8%, t(16)¼ 1.23, n.s.; out-group: 49.6%, t(16)¼�0.27,

n.s.; unaffiliated: 49.4%, t(16)¼�0.49, n.s. Three separate analyses of

variance that tested for differences between the three face-categories in

each ROI did not reveal any significant results, FG: F(48)¼ 0.09, n.s.;

VC: F(48)¼ 0.95, n.s.; CTR: F(48)¼ 0.93, n.s.

Finally, to rule out the possibility that successful race decoding was

driven by stimulus-independent spatial correlations in the data (inde-

pendent of the race of a face) and over-fitting arbitrary patterns of

spatial correlations in the data, we carried out a shuffle-control test

(Mur et al., 2009; Kaul et al., 2011). If race decoding were driven by

chance, similar results should be obtained if labels indicating the con-

ditions during training were shuffled randomly. To test this possibility,

we ran a separate analysis using the shuffle-control routine with the

MVPA toolbox, in which labels during training were re-shuffled for

each round of the cross-validation. We expected the resulting distri-

bution of decoding accuracies to confirm the expected distribution for

chance prediction (two categories¼ 50% chance). The result

confirmed the distribution of decoding accuracies expected under

the null hypothesis, VC: 50.5%, t(16)¼ 0.82, n.s.; FG, 50.5%,

t(16)¼ 0.63, n.s.; CTR, 50.1%, t(16)¼ 0.09, n.s.

DISCUSSION

In this research, we examined the underlying neural representations of

race in the FG and early visual cortex using MVPA, an analytic tech-

nique that can identify category-based neural representations in the

absence of mean-level differential activity between categories (see Kaul

et al., 2011). As predicted, multivariate analyses of patterns of neural

activity within the FG could decode the race of faces above chance even

when univariate analyses were not able to detect mean-level race

differences in the FG. Importantly, race decoding in a size-matched

control region was not significantly different from chance, suggesting

that decoding accuracy for facial race was not due to potential con-

founds, such as a general increase in blood flow. Moreover, race was

represented in the FG to a greater extent than early visual cortex, which

suggests that the FG effect did not merely reflect low-level perceptual

information (e.g. color, contrast) propagated from early visual cortex.4

The results of this research indicate that patterns of activation within

the FG continue to encode race even when mean FG activation is

driven by other factors.

We speculate that whereas early visual cortex is largely sensitive to

race due to low-level visual cues (e.g. skin color), the FG, as a brain

area implicated in higher-order visual processing, represents race in

our study because race provides an individuating cue that facilitates

categorization on the task-relevant group membership dimension.

In the task in our study, group membership of each face was not

indicated by a perceptual cue and instead had to be encoded in

memory. Thus, to successfully complete the task, participants needed

to retrieve each target’s group membership from memory. To the

extent that a target’s race helped participants access information

about the target in memory, race representation may have facilitated

the group membership categorization. We mention this as a potential

explanation for race representation in the FG in our study; however,

Fig. 2 (A) Mean race decoding accuracy in the FG, VC, and CTR. (B) Mean race decoding accuracy for each of the three subgroups: in-group, out-group and unaffiliated faces. *P < .05.

4Although greater classification accuracies of the FG vs early visual cortex suggest that the reported FG effects do

not simply reflect low-level visual processing, it is important to note that we are not able to rule out the

possibilities that these areas differentially represent information according to an unknown non-linear structure or

that our results are dependent on the particular resolution of our fMRI data.
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further research will be necessary to examine this possibility (see Kaul

et al., 2012).

It is noteworthy that although our MVPA analyses suggest that race

is represented in the FG, behavioral research using the same novel

group, mixed-race paradigm has demonstrated that evaluations and

memory for faces are characterized by biases in group membership, not

race (Van Bavel and Cunningham, 2009; Van Bavel et al., 2012).

Indeed, this behavioral pattern matches the univariate results. Race is

represented in the FG, but the mean response of the FG does not reflect

racial differences among the target faces. Perhaps, as we posit above,

race facilitates activation of relevant non-perceptual group information

from memory, but once the group information is activated, the race

information is no longer useful for task completion. Thus, the possi-

bility arises that race is perceptually represented in the brain, even

when it is functionally erased in terms of biased evaluations and

behavior (Cunningham et al., 2007; Van Bavel and Cunningham,

2009; Van Bavel et al., 2012a,b).

Many social psychological perspectives suggest that group differ-

ences can be bridged by minimizing group distinctions and appealing

to higher-order common identities (Allport, 1954; Sherif et al., 1961;

Gaertner et al., 1993). The appeal of this research has contributed to

the emergence of ‘colorblind’ initiatives, which assume that acknowl-

edging race is harmful to harmonious intergroup relations. Our find-

ings suggest, however, that the brain may detect and represent race in

contexts where behaviors are not negatively impacted by racial repre-

sentations. Thus, it appears that the way the brain actually processes

race is consistent with policies that recognize both that phenotypic

differences between races are difficult to ignore, and that noticing

racial differences does not necessarily mean that people will be eval-

uated or treated poorly. In fact, policies that embrace recognition of

racial diversity have been shown to outperform policies that encourage

people to ignore racial differences (Apfelbaum et al., 2010).

Returning to Martin Luther King Jr, although the words ‘perceived’

and ‘judged’ are often used interchangeably, it is notable that he

dreamt that his children would not be ‘judged’ by the color of their

skin. Perhaps King recognized that ‘seeing’ race is not inherently

problematic for race relations. It is what the mind subsequently does

with this information that matters.
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